Endotoxins in swine – effects and strategies for control

by Josep Garcia-Sirera, Special Nutrients Inc, 2766 Douglas Road, Coconut Grove, Florida 33133, USA.

Endotoxins are structural components of bacteria. They are part of the outer membrane of Gram negative bacteria, which are released mainly when bacteria are lysed, due to the use of antibiotics or because of the body’s defence mechanism. Together with phospholipids and membrane bound proteins they are constituents of the outer cell membrane. The typical structure of an endotoxin consists of a lipopolysaccharide (LPS). These LPS define many of the properties of host-parasite interactions.

LPS consists of three structural elements. One is a hydrophobic component, called lipid A, which serves to anchor the molecule into the membrane. The second is a core oligosaccharide. The third component is a hydrophilic O-polysaccharide projecting into the extracellular space. More than 150 different variants of the third component are known. The O-polysaccharide portion seems to be relevant to host-parasite interactions because its disappearance results in loss of virulence.

The loss of the proximal part of the core oligosaccharide induces bacteria to become extremely sensitive to detergents, antibiotics and bile salts. So it seems that this region is essential for the maintenance of outer membrane functions as a biological barrier. Mutations altering the lipid A component are mostly not viable, suggesting that it is important for the maintenance of outer membrane integrity as a whole.

Lipid A and virulence

The physiological activities of LPS are mediated mainly by the lipid A component of LPS. Lipid A is a powerful biological response modifier that can stimulate the mammalian immune system. During infectious disease caused by Gram negative bacteria, endotoxins released from, or part of, multiplying cells have similar effects on animals and significantly contribute to the symptoms and pathology of the disease encountered.

Since lipid A is embedded in the outer membrane of bacterial cells, it probably only exerts its toxic effects when the bacteria are lysed as a result of autolysis and the membrane attack complex (MAC), ingestion and killing by phagocytes, or killing with certain types of antibiotics.

The injection of living or killed Gram negative cells or purified LPS into experimental animals causes a wide spectrum of nonspecific pathophysiological reactions, such as fever, changes in white blood cell counts, disseminated intravascular coagulation, hypotension, shock and death. Injection of fairly small doses of endotoxin results in death in most mammals.

The sequence of events follows a regular pattern:

- Latent period.
- Physiological distress (diarrhoea, prostration, shock).
- Death.

How soon death occurs varies on the dose of the endotoxin, route of administration, and species of animal. Animals vary in their susceptibility to endotoxin and the mechanism is complex.

In humans, LPS binds to a lipid binding protein (LBP) in the serum which transfers it to CD14 on the cell membrane, which in turn transfers it to another non-anchored pro-}

\[\text{Continued on page 14}\]
tumour necrosis factor (TNFalpha), as well as other cytokines and mediators.

- Activation of the complement cascade. C3a and C5a cause histamine release (leading to vasodilation) and affect neutrophil chemotaxis and accumulation. The result is inflammation.

- Activation of the coagulation cascade. Initial activation of Hageman factor (blood-clotting Factor XII) can activate several humoral systems resulting in:
 - coagulation: a blood clotting cascade that leads to coagulation, thrombosis, acute disseminated intravascular coagulation, which depletes platelets and various clotting factors resulting in internal bleeding.
 - activation of the complement alternative pathway (which leads to inflammation).
 - plasmin activation which leads to fibrinolysis and haemorrhage.
 - kinin activation releases bradykinins and other vasoactive peptides which causes hypotension.

The net effect is to induce inflammation, intravascular coagulation, haemorrhage and shock. LPS also acts as a B cell mitogen, stimulating the polyclonal differentiation and multiplication of B-cells and the secretion of immunoglobulins, especially IgG and IgM.

Control of endotoxins

In general, strategies to control endotoxin contamination in animals include all of those aimed at the reduction of bacterial contamination. These strategies include, but are not limited to, biosecurity, use of prebiotics, probiotics and improved nutrient digestibility. Other strategies such as vaccination and use of toxin binders specifically target endotoxin contamination.

- **Vaccination.** As explained before, the lipid A portion is responsible for endotoxin toxicity. Also it is the more consistent portion of LPS structure. Currently, immunisation against lipid A is being developed, but the high cost makes it a non-viable option for livestock production.

 Another option considered in vaccination is to immunise against LBP, in an attempt to reduce the formation of LBS-LBP complex that initiates the cascade of events leading to pathogenesis. This option is also expensive and currently only to be considered for human use.

- **Immunity modulators.** Use of immune modulators to compensate the effects of endotoxins have been tested in animal production. In broilers, inoculation with LPS induces an activation of the immune system.

 Some studies show that broilers inoculated with LPS decrease productivity. This reduction is related to the action of interleukins produced during the acute inflammatory phase. On the other hand, some studies show the immune-modulating action of β-glucans present in yeast cell wall.

 Table 1 shows the results of using yeast cell wall (YCL) in diet of broilers inoculated with LPS. YCL was capable of counteracting the effect of LPS in conversion index (CI).

 Further tests would be needed to study the possibility of using immune modulators against endotoxins.

 A more practical approach to reduce absorption of endotoxins from the gastrointestinal tract of livestock is the use of toxin

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Final weight (g)</th>
<th>ADG (g)</th>
<th>Feed intake (g/d)</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>749.68±14.16</td>
<td>33.61±0.66</td>
<td>44.96±0.88</td>
<td>1.388±0.010</td>
</tr>
<tr>
<td>LPS</td>
<td>684.63±16.81</td>
<td>30.51±0.79</td>
<td>42.58±0.97</td>
<td>1.396±0.018</td>
</tr>
<tr>
<td>YCL</td>
<td>744.40±19.12</td>
<td>33.35±0.91</td>
<td>44.28±1.04</td>
<td>1.328±0.012</td>
</tr>
<tr>
<td>LPS + YCL</td>
<td>692.93±8.25</td>
<td>30.91±0.38</td>
<td>41.56±0.58</td>
<td>1.344±0.014</td>
</tr>
</tbody>
</table>

Means in the same column with a different letter are statistically different (P<0.05)

Table 1. Effect of inclusion of yeast cell wall in the diet on production parameters (1-21 days) of broilers inoculated with LPS of E. coli (Badia R. et al).
binders. Toxin binders are widely used to control other toxins such as mycotoxins.

The binder and the mycotoxin form a complex that is too large to be absorbed into the blood system. The complex is then eliminated in the faeces.

Most mycotoxin binders are hydrophilic molecules (bentonites, aluminosilicates) efficient at capturing polar molecules such as aflatoxin. The capacity of these traditional mycotoxin binders to capture more lipophilic-like molecules such zearalanone or DON is questionable. There are also organic mycotoxin binders (MOS based) that claim to be able to adsorb a wider range of mycotoxins.

When considering the possibility of using toxin binders to capture endotoxins, the ideal binder candidate should target lipid A. The reason being that lipid A is responsible for the pathogenic effects of endotoxins, and it is the portion of the structure that remains constant across different endotoxins, so by targeting lipid A, the toxin binder would have a wider range of action.

Some preliminary studies have already tested the possibility of using toxin binders against endotoxins in swine. Fig. 3 shows the results of using a commercially available toxin binder to reduce free endotoxin concentration in endotoxin producing bacterial cell culture.

The product was capable of binding endotoxins at two different inclusion rates. This binding capacity was confirmed in an in vivo test. Table 2 shows free endotoxin concentration in blood of sows before and after feeding them the commercial toxin binder.

Some preliminary data suggest that the toxin binder is capable of binding endotoxin and the gastrointestinal tract, and thus preventing endotoxins from being absorbed.

Further studies are currently underway to further test this product.

Summary

Endotoxins have a wide variety of effects on livestock affecting performance parameters. Different means of control of endotoxins have been tested, but most of them are too expensive to be considered in animal production.

A cost effective method would be the use of toxin binders to capture endotoxins in the gastrointestinal tract and preventing them from entering the blood systems.

Some studies are underway to test this possibility.

<table>
<thead>
<tr>
<th>Sow number</th>
<th>Endotoxin ml/L Before binder</th>
<th>Endotoxin ml/L After binder</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>4.55</td>
<td><0.05</td>
</tr>
<tr>
<td>125</td>
<td>30.86</td>
<td><0.05</td>
</tr>
<tr>
<td>126</td>
<td><0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>127</td>
<td>>50</td>
<td><0.05</td>
</tr>
<tr>
<td>128</td>
<td>22.88</td>
<td><0.05</td>
</tr>
<tr>
<td>129</td>
<td>2.85</td>
<td><0.05</td>
</tr>
<tr>
<td>130</td>
<td>47.33</td>
<td><0.05</td>
</tr>
</tbody>
</table>