Effects of phytophogenic feed additives on bird health

by Andreas S. Müller, Senior Manager R&D Poultry, Delacon Biotechnik GmbH.

From January 1st 2006 onwards in the European Union (EU) antibiotics were banned as growth promoting feed additives. As the first and currently single Asian country the Republic of South Korea followed the EU example in 2011.

It can be expected that numerous further big countries in the world will also remove feed antibiotics within the next few years.

The protection of consumers’ health is the main reason for these decisions.

However, the removal of antibiotics at the same time means a big challenge, since alternative substances should be comparably effective with regard to their impact on the productivity of farm animals and with regard to the preservation of animal health.

Promising alternative

Within the alternatives to antibiotics, phytophogenic substances represent the most promising class of feed additives. This opinion is based on the availability of an infinite number of available plants with highly active ingredients. The spectrum of effects mediated by plant derived compounds includes the disturbance of microbial communication, antioxidant properties, and anti-inflammatory effects.

In this article, two aspects of selected phytophogenic compounds are looked at in more detail:

- Disturbance of microbial communication.
- Antioxidant and anti-inflammatory effects.

With regard to the efficiency to protect farm animals against disorders caused by pathogenic microorganisms, it has been frequently postulated, that phytophogenic substances (in particular essential oils and their compounds) exert bactericidal effects. By definition the term ‘minimum inhibitory concentration’ (MIC) towards a micro-organism (MO) means a reduction of MO viability by more than 90%.

The minimum bactericidal concentration (MBC) means a reduction of viability by more than 99%.

Tables 1 and 2 give an overview of the MIC concentrations of selected essential oils and essential oil compounds against several micro-organisms.

Neglecting an additional dilution effect of the feed in the intestine, the MIC concentrations give evidence that genuine bactericidal effects of phytophogenic compounds in the animal cannot be obtained with phytophogenic additives. Essential oil concentrations in the feed, unrolling bactericidal effects, would:

- Result in a reduced feed intake and performance due to the strong taste of the oils.
- Be economically unmanageable.

Quorum sensing

Quorum sensing (QS), or bacterial cell-to-cell communication, is a mechanism of gene regulation in which bacteria coordinate the expression of certain genes in response to the presence of small signalling molecules (inducers). This regulatory mechanism has been shown to control virulence gene expression in many different pathogens. Virulence factors include gene products involved in motility, adhesion to the host’s intestinal epithelium, host tissue degradation, iron acquisition, and toxin production.

The abundance of the signalling molecules in the environment thereby directly reflects the bacterial population density. If a certain threshold of inducer concentration is reached, the bacteria start to produce virulence factors, leading to the outbreak of the disease in the host.

Table 1. MIC values of selected single compounds from essential oils (Burt, 2004).

<table>
<thead>
<tr>
<th>Essential oil component</th>
<th>Bacteria species</th>
<th>MIC (estimated range) µL/mL ~ µg/mL ~ g/L ~ kg/t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Escherichia coli</td>
<td>Salmonella typhimurium</td>
</tr>
<tr>
<td>Carvacrol (Oregano)</td>
<td>0.25-5.0</td>
<td>0.22-0.25</td>
</tr>
<tr>
<td>Thymol (Thyme)</td>
<td>0.22-0.45</td>
<td>0.07</td>
</tr>
<tr>
<td>Citral (Lemon)</td>
<td>0.55</td>
<td>0.5</td>
</tr>
<tr>
<td>Eugenol (Clove)</td>
<td>1.0</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Table 2. MIC values of selected single compounds from essential oils (Burt, 2004).

<table>
<thead>
<tr>
<th>Essential oil component</th>
<th>Bacteria species</th>
<th>MIC (estimated range) µL/mL ~ µg/mL ~ g/L ~ kg/t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Escherichia coli</td>
<td>Salmonella typhimurium</td>
</tr>
<tr>
<td>Rosemary</td>
<td>4.5-10.0</td>
<td>>20</td>
</tr>
<tr>
<td>Oregano</td>
<td>0.50-1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Thyme</td>
<td>0.45-1.25</td>
<td>0.45-20</td>
</tr>
<tr>
<td>Sage</td>
<td>3.5-5.0</td>
<td>10.0-20.0</td>
</tr>
<tr>
<td>Clove</td>
<td>0.40-2.5</td>
<td>>20.0</td>
</tr>
</tbody>
</table>

Continued on page 9
In the context of QS by phyto-
genic substances it could be shown that clove oil strongly inhibited viola-
cin fluorescence in Chromobac-
terium violaceum at already sub-
inhibitory concentrations (Table 3).

Promising results for QS by essen-
tial oils were also reported for
Campylobacter jejuni and the
enterohemorrhagic E. coli strain
O157:H7.

In the first mentioned study,
already 0.10mmol/L carvacrol, cor-
responding to 15mg carvacrol/L,
significantly inhibited the motility of
Campylobacter jejuni. In the latter
study, 1mmol/L carvacrol
(150mg/L) induced a strong heat-
shock response in E. coli and inhib-
ited flagellin synthesis, essential for
the motility of the pathogen.

These results impressively show
that phytoconstituents have the
potential to disturb pathogenic
micro-organisms very well.

In the future it is therefore of sig-
ificant interest to force research
into studying the efficiency of phyto-
genic substances on QS of patho-
genic bacteria.

In the ‘post-antibiotic-era’ the dis-
ruption of QS of pathogenic bacteria
by phytoconstituents represents
one core strategy to preserve farm
animals from infectious diseases of
the intestine.

Additives and inflammation

Due to the ban of growth promot-
ing antibiotics, the infection of farm
animals with species specific patho-
genic micro-organisms represents an
issue of growing importance. In
numerous cases, the infection with
pathogens, does not result in the full
blown clinical picture, but leads to a
severe reduction of performance
and causes economic damage.

This aspect is well known with
regard to the infection of chickens
with Eimeria tenella. Irrespective of
its degree, an infection with intesti-
nal pathogens induces an inflammat-
ory response in the hosts.

During an infection with patho-
genic micro-organisms, intestinal
cells secrete a variety of cytokines in
order to attract cells of the immune
system. In the early stages of
immune response, macrophages,
entering the affected tissues, pro-
duce a strong inflammatory reaction.

In later stages T cells are also
involved in the promotion of inflam-
mation. The most important intra-
cellular transcription factor,
triggering inflammation in a cell is the
Nuclear factor ‘kappa-light-chain-
erythroid-derived 2’-like 2’
(NFkB).

NFkB on the one hand induces the
synthesis of cytokines, responsible for
the further recruitment and
attachment of immune cells (for
example. IL6, VCAM, ICAM) and of
Cyclooxygenase 2 (COX2), produc-
ing pro-inflammatory prostaglandins.

On the other hand, NFkB action is
needed for the production of anti-
inflammatory cytokines, responsible
for the termination of an inflamma-
tion (for example IL-10), and of
antioxidant enzymes, which enable
cell survival and help to terminate an
inflammation.

The endogenous antioxidant
enzymes, which are of particular
interest for the termination of an inflam-
amation are NAD(P)H-
Quinone-Oxidoreductase
I (NQO1), Hem oxygenase 1
(HO1) and glutathione peroxidase 2
(GPx2). A common feature of these
mentioned antioxidant enzymes
consists in their specific synthesis
mechanism. Their transcription and synthesis
takes place, due to the release of the
transcription factor ‘Nuclear fac-
tor (erythroid-derived) 2-like 2’
(Nrf2). In this context it must be
mentioned that besides NFkB and
oxidative stress, numerous phyto-
genic substances act as very strong
Nrf2-releasing agents. Curcumin
from curcuma longa and the brassi-
daceae isothiocyanate sulforaphane
are the best characterised inducers of
endogenous antioxidant enzymes
by triggering Nrf2-release.

The induction of endogenous
antioxidant enzymes concomitantly
can reduce the severity of inflammat-
ion. In this context it could be
shown that the induction of GPx2
reduces COX2-dependent
prostaglandin E2 synthesis.

The results of our own investiga-
tions with growing broilers revealed a
considerable induction of a broad
panel of Nrf2-dependent antioxidant
enzymes and of phase II enzymes in
the jejunum, by supplementing the
diets with 150g/t turmeric oil or
with sulforaphane-containing broc-
coli extract. In an own rat study it
could be demonstrated that
sulforaphane feeding significantly
induced intestinal antioxidant
enzymes, while reducing the expres-
sion of COXI, COXII, VCAM, and
Monocyte Chemotactic Protein 1
(MCP1).

In a recent study with Eimeria
tenella infected broilers, the addition
of capsicum and turmeric oleoresins
to the diets strongly reduced intesti-
 nal lesion score and the expression
levels of main pro-inflammatory
cytokines.

The results of these and numerous
other trials indicate that various
phytoconstituents have promis-
ing effects with regard to the reduc-
tion of pathogen-induced intestinal
inflammations in farm animals. In the
future, research into the screening
of anti-inflammatory phytoconstitu-
tes should be focused in order to
develop phytoconstituents with cus-
tomised effects against species specific
infectious diseases.

Moreover, there is a need to
develop products with an increased
content of active substances for the
treatment of acute intestinal inflam-
ination.

Conclusions

- Due to their content of an infinite
 variety of active ingredients, phyto-
genic substances represent one of
 the most interesting and important
 classes of current and future feed
 additives.
- Phytoconstituents bear the
 potential to effectively repress the
 pathogenicity of intestinal micro-
 organisms and to prevent and treat
 infectious diseases of farm animals.
- In the future a broad-based
 research is needed to make the full
 potential of phytoconstituents
 usable in order to preserve the
 health of farm animals and
 consumers.

References

- Khan MS, Zahir M, Hasan S,
 Husain FM, Ahmad I. (2009)
 Inhibition of quorum sensing regulated
 bacterial functions by plant essential
 oils with special reference to clove oil.

Fig. 1. Interfaces between inducible antioxidant enzymes and immune response.

**Table 3. Cell viability and quorum sensing inhibition of CV, incubated with clove oil (compiled from: Khan
MS, Zahir M, Hasan S, Husain FM, Ahmad I.)**