Brazilian experiences with mycotoxins

by Dr Douglas Zaviezo,
Special Nutrients Inc, 2766 Douglas Road, Miami, Florida 33133, USA.

Brazil is one of the largest grain, poultry and swine producers in the world. For many years they were very fortunate because the only mycotoxin problem they had was aflatoxin; but in the last four years fumonisin, zearalenone and vomitoxin started to be detected at high levels in corn, wheat and soy, affecting animal production.

A sudden influx of mycotoxin binders began to appear offering solutions based more on marketing than on scientifically proven results. The Brazilian government, facing the mycotoxin problem and the abundance of products, decided to take action to provide a real solution to this situation.

Table 1 shows the most recent data of mycotoxin contamination found in animal feed samples in Brazil.

<table>
<thead>
<tr>
<th>Mycotoxin</th>
<th>Target organ</th>
<th>Damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aflatoxin</td>
<td>Liver in poultry and swine</td>
<td>Enlarged, fatty, friable</td>
</tr>
<tr>
<td>Ochratoxin</td>
<td>Kidney in poultry and swine</td>
<td>Enlarge, congested</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Urate deposits in poultry</td>
</tr>
<tr>
<td>T-2/DAS</td>
<td>Mouth, tongue and gizzard in poultry, tongue in swine</td>
<td>Necrosis, ulcers, erosions</td>
</tr>
<tr>
<td>Zearalenone</td>
<td>Female reproductive organs in swine</td>
<td>Enlarged, vulvovaginitis</td>
</tr>
<tr>
<td>Deoxynivalenol</td>
<td>Liver</td>
<td>Size reduction</td>
</tr>
<tr>
<td>Fumonisin</td>
<td>Lungs, liver and heart in swine</td>
<td>Enlarged</td>
</tr>
</tbody>
</table>

Table 1. Main mycotoxins found in animal feed in Brazil (Dr Mallmann et al, LAMIC-UFSM, 2008).

Table 2. Target organs that must be evaluated in poultry and swine when testing an anti-mycotoxin additive.

Table 2. Target organs that must be evaluated in poultry and swine when testing an anti-mycotoxin additive.

In vitro study

The process of approval starts with an in vitro study conducted with high performance liquid chromatography (HPLC) using a methodology considering two types of solutions, one of approximate pH 2 and another of approximately pH 6, mimicking the gastric and the intestinal mediums, respectively.

Continued on page 13
Several levels of the anti-mycotoxin additive are used and, depending on the mycotoxin tested, the mycotoxin level can vary from 1000 to 2500ppb. If the product has an acceptable performance; better than 80% efficacy, then it can enter into the second phase.

**In vivo study**

The second phase is an in vivo study that is performed with only one mycotoxin at a time, using 1,000 to 50,000ppb, depending on the mycotoxin; and tested on a specific type of animal at a time. There is a standard or basic experimental protocol consisting of three or four treatments: a control without mycotoxins; a control with mycotoxin; and one with mycotoxin with adsorbent. The fourth treatment could be one without mycotoxin with adsorbent. Additional treatments can be included to this experimental design, such as different testing levels of the adsorbent.

Besides the productive performance measurements (body weight gain, feed consumption and feed efficiency), it was concluded that it is critical to evaluate the statistical significant beneficial effect of the mycotoxin inactivator on the target organ or organs affected by the mycotoxin tested. Table 2 shows the organs most affected by different mycotoxins. It is important to evaluate the target organs since they reflect the specific damage of the mycotoxin and also because there are some adsorbents that base their effectiveness on a positive effect on performance, which is obtained mainly due to the presence of enzymes, beneficial bacteria, yeast and/or immuno-stimulant in the composition of those products.

**Third phase**

The third phase consists of re-testing the mycotoxin binder in vitro every six months and in vivo every two years to ensure that the manufacturers are selling the same product that was originally approved.

**Products approved**

This programme was implemented about two years ago and few products have been approved; all of them are clay based products. So far there are 18 products approved for the prevention of aflatoxin toxicity in poultry; three for the prevention of aflatoxin toxicity in swine; two for the prevention of fumonisin toxicity in poultry; one for the prevention of fumonisin toxicity in swine; and five for the prevention of zearalenone in swine. Of these 30 approvals 29 are for clay based products and only two products have been approved for more than one mycotoxin at this time.

Through this approval process it was evident that a product that prevented a specific mycotoxin toxicity in poultry will not necessarily prevent the toxicity of the same mycotoxin in swine or vice versa.

It was also demonstrated that clays are not only effective at preventing aflatoxin toxicity, but few of them are very efficacious in preventing zearalenone and fumonisin toxicities. Effectiveness of mycotoxin adsorbents cannot be based only on in vitro trials anymore; they must be evaluated in vivo using a scientific experimental design with measurements of the beneficial effects of the product on animal performance and on the target organ(s) affected by the mycotoxin being studied. The Brazilian producers should be very proud of UFSM-LAMIC for its professional work and grateful for the government’s action of preventing the sale of anti-mycotoxin additives based on marketing instead of serious scientific evaluation.