Increasing lifetime performance starts with good calf management

Raising healthy heifers is a key component to achieving future high productivity and increasing the lifetime performance of the dairy cow. Many dairy farmers need to allocate more of their resources to calf and heifer management, and it is important to illustrate that this investment is worthwhile and cost-effective.

by Dr Anna Catharina Berge
Alltech
www.alltech.com

Good nutrition and management routines will prevent most heifer diseases as well as ensure optimal growth. However, the absence of apparent disease is not sufficient to guarantee future productivity. Heifer nutrition should meet the growing animal’s nutritional needs as well as support the transformation of the pre-ruminant calf into a ruminating, high-producing dairy cow with good udder development.

Stress in heifers due to parturition, nutrition, dietary changes, transport, farm location changes, surgical interventions, social group systems, overcrowding and other environmental conditions are all risks for disease. Good immunity is necessary to maintain health in our current dairy production systems, where numerous and diverse pathogens are continually challenging the health, welfare and productivity of our animals.

Dam health and calving management

A strong calf is created by a healthy and strong cow, with colostrum quality and quantity influenced by the dam’s pre-calving nutrition and micronutrition.

Deficiencies of micronutrients (for example iodine, selenium, copper and zinc) have been associated with high stillbirth rates.

For example, organic selenium supplementation to dry cows provides increased selenium concentration in colostrum and milk compared to inorganic selenium, and this has been shown to reduce calfhood disease and improve calf weight gain.

Mannan-oligosaccharide supplementation of the dam has also been shown to improve the colostral antibody levels to rotavirus following vaccination.

The Alltech Mineral Management programme and the Alltech Gut Health programme can assist the farmer in providing the best possible conditions for the dry cow that will not only benefit the calf, but also the coming lactation.

Perinatal mortality in cows and heifers varies between 2% and 20% across dairy industries internationally, with the majority of countries falling between 5% and 8%. Most calves that die in the perinatal period were alive at the start of calving and were dried off as quickly as possible after birth and placed in a draught-free environment. The temperature drop of 50° Celsius compared to the womb. The newborn calf needs to be dried off as quickly as possible after birth and placed in a draught-free environment.

The temperature challenges can be reduced by providing an infrared lamp, an insulated calf pen and a jacket. The temperature challenges can be reduced by providing an infrared lamp, an insulated calf pen and a jacket.

Colostrum is critical for a healthy, strong calf

Colostrum is the first source of liquid, energy, nutrients, vitamins, antibodies (immunoglobulins) and various bioactive substances that the calf will ingest. The colostrum immunoglobulins protect the calf against pathogens and disease during the time that the young ruminant’s own immune system is evolving. During the first 24 hours of life, the calf’s gut has the ability to take up immunoglobulins into the blood instead of digesting them (i.e., passive transfer of immunity), but for every hour that passes after birth, the transfer of these immunoglobulins into the blood decreases.

In general, if a dairy farm has continuous problems with high mortality, the most frequent cause is that there is failure in the timely administration (within a few hours of birth) of sufficient quantities (10% of calf body weight) and good quality, hygienic colostrum (>50g/L of IgG and total bacterial plate count <100,000 cfu/mL). A refractometer or a colostrometer to evaluate immunoglobulin content of the colostrum is essential, since colostrum quality in dairy cows has large variations. A good way to ensure good passive transfer of immunity is to bottle and/or oesophageal tube-feed the colostrum directly after birth. A second feeding of colostrum within 6-10 hours is strongly recommended prior to gradual transitioning over to milk or milk replacer.

Checking the immunoglobulin concentration in the blood of the calves two to five days after birth is a good way to monitor farm practices by either measuring serum total proteins (>5.5g/L) or serum immunoglobulin G levels (preferably >1.600mg/dL).

A study evaluated the effects of feeding calves two litres compared to four litres of colostrum immediately after birth on their future growth and lactational performance as both growing heifers and lactating cows. Veterinary costs were 60% lower and average daily gain from birth to conception was 200g higher for heifers fed four litres of colostrum compared to those fed two litres. In the first two lactations, the heifers that had been fed four litres produced 550kg more milk and had a 16% decrease in early
Continued from page 15

culling rate. Another study indicated that
for each milligram IgG/mL of blood at 24
hours of age, first lactation milk yield
increased by 8.5kg. Therefore, high priority
needs to be put on this colostrum feed,
since there is only one opportunity for the
heifer to get it right.

Pre-weaning feeding impacts future productivity

Pre-weaned calf nutrition is very important
to provide the calf with energy and
nutrients in order to maintain basic body
functions, grow and develop the immune
system. Numerous studies have evaluated
the impact of pre-weaning growth and
feeding systems on future milk production.
There is a meta-analysis of these studies
indicating that for every 100g/day of
increased growth, the heifer will produce
155kg more milk in the first lactation.
A rule of thumb is that a heifer should
double her birth weight by the time of
weaning. Many dairy calves are not fed
sufficient quantities of milk or milk replacer
during the pre-weaning period, especially
during the first few weeks of life, when
grain intake is limited. The underfed calf
is not able to compensate for lack of energy
and nutrients from the milk feed by
increasing grain intake, and calves that are
not feeling well usually decrease grain
intake prior to decreasing milk intake.
Therefore, it is absolutely essential to
ensure that the milk feed provides
sufficient energy for maintenance and
growth and to support the immune
functions.
Both anecdotal evidence from dairy
producers and clinical studies have shown
that feeding milk or pasteurised waste milk
(milk withheld from human consumption)
may provide better growth and health. This
is most likely attributed to the higher fat
and protein content of cow’s milk
compared to milk replacer. The challenge is
to set up hygienic milk handling and
pasteurisation routines for feeding calves
cow’s milk. Therefore, milk replacers are for
many farmers easier to handle and feed. It is
important to choose a high-quality milk
replacer in which the protein source is milk
proteins and the fat level is high enough to
provide sufficient energy for the calf to
grow. Whether using milk or milk replacer, it is
of value to check the dry matter
concentration fed and to carefully calculate
the quantities fed during the various
seasons to support the desired weight gain.
A good-quality starter grain specifically
formulated for calves with approximately
19% protein should be introduced in small
quantities as soon as the first week of life.
Palatability is important, and calves tend
to prefer and perform better on textured,
muesli-type starter feed composed of
pellets and whole grain. A calf can be
weaned when she is consuming
approximately 1kg of grain per day. Gradual
weaning over a period of 10 days has been
recommended. Calves mostly function as monogastric
animals pre-weaning, and the rumen is not
fully functional prior to six months of age.
Many times, calves are fed too much hay or
TMR too early in life, and this limits the
calf’s growth. If the calf is fed a good-
quality starter grain, then no hay or very
little hay is needed pre-weaning. After
weaning, a good-quality hay should be
gradually incorporated into the diet,
followed by a gradual transition onto TMR.
It is important to monitor body condition
and weight gain during this period to ensure
that the feed meets the calf’s needs.
Alltech’s gut health programme can assist
the farmer in addressing enteric challenges
and optimising growth. Mannan-
oligosaccharides can support gut function
by supporting the good commensal gut
flora, increasing the mucus layer in the
intestines and improving the local immune
function.
Meta-analysis of up to 20 studies
worldwide have shown that mannan-
oligosaccharide supplementation of the
liquid feed to calves decreases diarrhoea,
increases average daily weight gain by 65g
per day and improves feed conversion.
Metaphylactic or prophylactic inclusion
of antimicrobials in the feed may lead to
increased diarrhoeal disease and depressed
growth rates. Furthermore, individual
therapeutic administration for
uncomplicated diarrhoeal disease may lead
to increased diarrhoeal disease days,
depressed grain intake and weight gain. The
dairy’s medication protocols for calf health
should be reviewed, since the costs
incurred by antibiotic treatments may even
be counterproductive.

Calfohand disease has long-term consequences

Poor health during early life is believed to
have long-lasting effects on milk
production and longevity. Numerous
endemic diseases found on dairies can
greatly impact productivity and health.
A study of 122 dairy farms in southwest
Sweden indicated that cows that had
contracted mild diarrhoea during their first
three months of life had lower milk
production (344kg less in 305 days) than
those without diarrhoea.
Cryptosporidiosis is not only an enteric
disease challenge in calves, as it has been
shown that chronic cryptosporidiosis
infection in adult cows can lead to a 3kg
reduction in daily milk production.
Bovine viral diarrhoea disease is another
disease that impacts herd productivity, and
a systematic review including 44 studies in
15 countries over the last 30 years indicated
direct losses of up to $688 USD per dairy
animal. Bovine respiratory disease (BRD) is a
major reason for calf mortality and has
long-term consequences on herd
productivity. According to a Swedish study,
BRD in calves under three months of age
led to a 12% increase in calving intervals.
Others have estimated that BRD lowers
daily weight gain on average by 91g/day
and also lowers carcass grading.
A New York study indicated that heifer
calves without dullness/BRD were twice as
likely to calve and calved six months earlier
compared to BRD calves.
In a herd study in Ireland, chronic calf
pneumonia resulted in a 5% and 10%
reduction in first and second lactation milk
yield.

Financial impacts of getting the heifer in calf

The rearing practices for heifers before and
after breeding, as well as decisions about
when to breed, can have a significant
impact on the conception rates,
productivity and longevity of the dairy cow.
A model of a dairy replacement herd
showed that the average age at first calving
affected the net costs of raising
replacement heifers; reducing the age at
first calving by one month lowered the cost of
a replacement program of a 100-cow
herd by $1,400 or 4.3%.
A UK study of the costs associated with
heifer rearing estimated that each extra
day in age at first calving increased the mean
cost of rearing during pregnancy by
£0.33/d, and an additional month would result
in an additional £92.
The total cost of rearing young dairy
cattle in the Netherlands was estimated as
€1,567 per successfully reared heifer.
Reducing the age of first calving by one
month reduced the total cost between 2.6-
5.7%. The rearing costs of a heifer that
experienced disease at least once were on
average £95 higher than those of healthy
heifers.

Conclusions

The evidence is clear that poor growth in
young calves strongly impacts subsequent
milk production. Priority should be placed
first on colostrum feed and later on high-
quality milk or milk replacer in sufficient
quantities in order to optimise growth and
health, therefore increasing the heifer’s
herd life and milk production potential.
Calfohand disease has long-term
consequences on health and productivity,
and focus should therefore be placed on
disease prevention, as ‘prevention is always
ter better than cure’. The future performance
of the herd is decided in the young heifers;
treat them well, as they are the future.

References are available
from the author on request